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Introduction Effect of clustering processes
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that dynamic clustering/declustering processes || Upon rising the reduced field strength, epreseniathe reduced fied suengths. Tre weical - Nlote that the acetone specific signal with the

are often the root cause for ion separation with the ion current is “shifting” from one and the analyte-specific signals with aX; left: ACN

. 3] . . . . (0.9 ppmV in the reaction tube and 1.6 ppmV in
this method.!®! The clustering of analyte ions sighal to another, while a plateau tne dift gas), right: Acetone (1.3 ppmV in reaction
with background waterl? or with modifiers, | spans between both peaks (see fig. 1), ¢ 22ppmVinthedritgas)

which are deliberately introduced in the drift This is explained by a cluster transition

lowest mobility (right, a3) seems to be independent
from the energetic situation, what is known for the
acetone dimer by former AP-IMS measurements.
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IMS known from literature. The separation of || The plateau strongly suggests an £ 000075 - g a3
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temperature as in DMS. Therefore, one could distribution of chemical species). 0,0002 . . . . oooots Tt
assume that statistical chemical systems are || Note the effect is observed with T L eseanm AR
Observed N ||V|S, Wthh IS 1ncorrect. Even different Systems Of Sma” analyteS. Figure 2: Effect of increasing reduced field strength on the reduced ion mobility of the typical analyte-specific signals defined in figure 1; left: ACN

(0.9 ppmV in the reaction tube and 0.6 ppmV in the drift gas), right: Acetone (1.3 ppmV in reaction tube and 2.2 ppmV in the drift gas)

without an oscillating electric field, there is still

a dynamic reaction system of ions and neutrals. Water cluster system
We present experimental results generated with
a High Kinetic Energy IMS (HiKE-IMS), which is e 40Td | 55Td | 70Td | 90Td 120 Td
characterized by a high resolution and increased £ £ g g™
effective ion temperatures.5! The results are || ©-
verified by simulations, which can be transferred || . . J\ L L L
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* The HIiKE-IMS (LEibniZ University HannOVer) IS Figure 3: Experimental HiKE-IMS-spectra in dependence of representative reduced field strength (from left: 40 Td, 55 Td, 70 Td, 90 Td and 120 Td) and the main species in the postulated declustering process.

based on a classical drift tube IMS.

 Analytes are induced in pure nitrogen to the
reaction tube and are ionized by means of a
corona discharge.

* The ions are separated in a 30.65 cm long
linear drift tube with nitrogen as drift gas and

With increasing reduced field strength, cluster transitions from the third to the separated in the transition, even with
the signals of the pure water clusters second water cluster and from the the high resolution of the HiKE-IMS.
(“RIP”) exhibit a stepwise, significant second cluster to H,0* even if the Note the pre-RIPs at lower drift times
broadening of the observed peaks. This conditions are not entirely identical (see relative to the water-RIP, which origins
effect coincides well with the simulated fig. 4). The clusters are not entirely have not been finally identified.
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