

And now for something completely different...

(Picture courtesy of Python M)

Theoretical spectra of CaOCa in the two lowest electronic states

- B. Ostojić, University of Belgrade
- P. R. Bunker, Massey University, Auckland
- P. Schwerdtfeger, Massey University, University of Marburg
- A. Gertych, University of Wuppertal
- P. Jensen, University of Wuppertal, Massey University

The general scheme of things

Group 2 alkaline-earth M₂O hypermetallic oxides

Time evolution of the project

2010	BeOBe	B. Ostojić, P. Jensen, P. Schwerdtfeger, B. Assadollahzadeh, and P. R. Bunker, <i>J. Mol.</i> <i>Spectrosc.</i> 263 , 21-26 (2010)
2011	MgOMg	B. Ostojić, P. R. Bunker, P. Schwerdtfeger, B. Assadollahzadeh, and P. Jensen, <i>Phys. Chem. Chem.</i> <i>Phys.</i> 13 , 7546–7553 (2011).
2012	CaOCa	B. Ostojić, P. R. Bunker, P. Schwerdtfeger, A. Gertych, and P. Jensen:, <i>J. Mol. Structure, in press.</i>
Near future	SrOSr	
Not- so- near future	BaOBa	
Rather distant future	RaORa	
Some time	Maybe another column of the periodic table?	

Motivation

Study of molecular clusters as a way of understanding the emergence of crystalline properties from molecular properties.

Elucidation of the stability and structure of metal-rich clusters impacts on the development of new catalytic materials.

General observation

The molecules BeOBe, MgOMg, and CaOCa studied *ab initio* thus far all have $\widetilde{X}^{1}\Sigma_{g}^{+}$ electronic ground states and lowlying $\widetilde{a}^{3}\Sigma_{u}^{+}$ electronic states.

	Molecule	$T_{\rm e}(\tilde{a}^{3}\Sigma_{u}^{+})/{\rm cm}^{-1}$
$T_{\rm e}(\widetilde{a}^{3}\Sigma_{\rm u}^{+})$	BeOBe	293
u)	MgOMg	671
	CaOCa	386

CaOCa ab initio calculation

Calculation of three-dimensional potential energy surface, and the electric dipole moment surfaces.

8

Multireference configuration interaction (MRCISD) approach in combination with internally contracted multireference perturbation theory (RS2C) based on full-valence complete active space selfconsistent field (FV-CASSCF) wavefunctions with a cc-pwCVQZ-DK basis set for Ca and a ccpCVQZ basis set for O.

			\tilde{X}^{1}	$\Sigma_{\rm g}^+$	$\tilde{a}^{3}\Sigma$	L+ u
vibrational	$(v_1, v_2^{\ell_2}, v_3)$	N_{\min}	$G_{ m vib}$	$B_{ m eff}$	$G_{ m vib}$	B_{eff}
anoraioo	$(0, 0^0, 0)$	0	0.00^{a}	0.0534	0.00^{b}	0.0530
energies	$(0, 1^{1e}, 0)$	1	54.84	0.0538	82.71	0.0533
	$(0, 1^{1f}_{0}, 0)$	1	54.84	0.0539	82.71	0.0533
and	$(0, 2^0, 0)$	0	106.74	0.0545	163.73	0.0537
	$(0, 2^{2e, f}, 0)$	2	110.06	0.0545	166.39	0.0536
Ryaluas	$(0, 3^{1e}, 0)$	1	158.30	0.0549	244.22	0.0539
Dvalues	$(0, 3^{1f}, 0)$	1	158.30	0.0552	244.22	0.0540
	$(0, 3^{3e, f}, 0)$	3	165.52	0.0550	250.96	0.0540
ΤΟΓ	$(0, 4^0, 0)$	0	207.87	0.0557	324.59	0.0542
	$(0, 4^{2e, f}, 0)$	2	210.74	0.0556	327.01	0.0543
	$(0, 4^{4e, f}, 0)$	4	221.18	0.0556	336.49	0.0543
	$(1,0^0, 0)$	0	345.39	0.0533	344.54	0.0530
	$(1, 1^{1e}, 0)$	1	410.29	0.0536	435.59	0.0531
calculated	$(1, 1^{1f}_{0}, 0)$	1	410.29	0.0537	435.59	0.0532
	$(1, 2^0, 0)$	0	468.85	0.0543	520.38	0.0535
OV MORBID	$(1, 2^{2e, f}, 0)$	2	474.08	0.0542	525.73	0.0535
sy monere	$(0, 0^0, 1)$	0	754.58	0.0531	755.92	0.0527
	$(0, 1^{1e}, 1)$	1	804.45	0.0536	834.68	0.0530
	$(0, 1^{1f}, 1)$	1	804.45	0.0537	834.68	0.0530
	$(0, 2^0, 1)$	0	852.91	0.0543	914.71	0.0534
	$(0, 2^{2e,f}, 1)$	2	855.49	0.0543	915.89	0.0533

Simulated spectra of ⁴⁰Ca¹⁶O⁴⁰Ca

Comparison with ⁴⁰Ca¹⁶O-spectrum

Experiment?

JOURNAL OF MOLECULAR SPECTROSCOPY 68, 114-121 (1977)

Infrared Spectra of Matrix-Isolated Calcium-44 Substituted Oxides

12

LESTER ANDREWS¹ AND BRUCE S. AULT²

Chemistry Department, University of Virginia, Charlottesville, Virginia 22901

The products of ⁴⁴Ca atom reactions with ozone and oxygen have been isolated in solid nitrogen at 15 K. An excellent wavenumber fit for four isotopic molecules confirms the diatomic CaO assignment. Calcium and oxygen isotopic data strongly support the observation of rhombic (CaO)₂ and isosceles triangular CaO₂ and Ca₂O species.

Experiment!

Spectra resulting from reactions of ${}^{44}Ca$ with ${}^{16}O_3$, and of ${}^{40}Ca$ with ${}^{16}O_3$ and with ${}^{18}O_3$.

The infrared spectra of the reaction products, in the 15 K nitrogen matrix, were recorded in the 400–800 cm⁻¹ region.

Fto. 1. Infrared spectra of calcium–ozone and calcium–ozygen reaction products in solid nitrogen at 15 K. Spectrum (a) natural "Ca and N₂/"O₄ = 130/1. Trace (h) "Ca and N₂/"O₄ = 150/1. Spectrum (c) "Ca and N₂/"O₄ = 100/1. Spectrum (c) "Ca and N₂ = 100/1. Spectrum (c) "Ca and N₄ = 100/1. Spect

Experiment!

Strong peaks attributed to CaOCa by Andrews and Ault:

Molecule	Peak wave- numbers/cm ⁻¹		
⁴⁰ Ca ¹⁶ O ⁴⁰ Ca	476, 486.8		
⁴⁰ Ca ¹⁸ O ⁴⁰ Ca	461, 472		
⁴⁴ Ca ¹⁶ O ⁴⁴ Ca	468, 477		

Simulated spectra of ⁴⁰Ca¹⁶O⁴⁰Ca

15

= 15 K	
Molecule	Peak wave- numbers/cm ⁻¹
⁴⁰ Ca ¹⁶ O ⁴⁰ Ca	476, 486.8
⁴⁰ Ca ¹⁸ O ⁴⁰ Ca	461, 472
⁴⁴ Ca ¹⁶ O ⁴⁴ Ca	468, 477

No reasonable assignment possible!

Simulated spectra of ⁴⁰Ca¹⁶O⁴⁰Ca

	<i>T</i> = 15 K	$a^{3}\Sigma_{\rm u}^{+}$
		$\overline{\begin{smallmatrix} & 0.05 \\ \hline & 0.04 \\ \hline & & \nu_2 \\ \hline \end{array}$
Molecule	Peak wave- numbers/cm ⁻¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
⁴⁰ Ca ¹⁶ O ⁴⁰ Ca	476, 486.8	$ \begin{array}{c} \underline{}\\ 0 \\ 100 \\ 200 \\ 300 \\ 400 \\ 500 \\ \underline{}\\ 50 \\ \\$
⁴⁰ Ca ¹⁸ O ⁴⁰ Ca	461, 472	ν_3
⁴⁴ Ca ¹⁶ O ⁴⁴ Ca	468, 477	
No reasonable possible!	e assignment	$\nu_1 + \nu_3$
		1000 1100 1200 1300 1400 1500 Wavenumber/cm ⁻¹

Conclusion:

The spectra observed by Andrews and Ault are not due to CaOCa.

17

We hope that our calculations will assist in the eventual spectroscopic characterization of CaOCa.