

Torsional splittings and anomalous intensities in HSOH

- •Two enantiomer minima
- •Internal rotation about the SO bond, strongly coupled to the rotation about the *a* axis (associated with K_a)
- Torsional splittings

HSOH: Torsional potential

2

H C H C H S C HSOH

Torsional splittings show strong variation with K_a

HOOH, HSSH, HNCNH: Splittings "stagger" with K_a

3

FIG. 13. Dependence of the torsional doublet splitting on K_a . The doublet splitting averaged over all J-values was obtained from the line positions of the 'Q₀ branch for $K_a = 0$, the ' R_{K_a} branch for $K_a = 1$ to $K_x = 4$, the ' R_{K_a} and ' Q_{K_a} branches for $K_a = 5$ and 6, and from an analysis of the linewidth for $K_a = 7$. For $K_a = 8$ the splitting is identical to that for $K_a = 7$ within the experimental accuracy. For $K_a = 9$, no broadening of the ' R_{K_a} lines due to torsional doubling could be detected.

Example: HNCNH Experiment: M. Birk, M. Winnewisser, *J. Mol. Spectrosc.* **136**, 402 (1989)

Semi-empirical explanation by Hougen and co-workers for HOOH and HSSH: J.T. Hougen, *Can. J. Phys.* **62**, 1392 (1984). J.T. Hougen, B.M. DeKoven, *J. Mol. Spectrosc.* **98**, 375 (1983).

HSOH: No staggering, more complicated variation

4

M. Behnke, J. Suhr, S. Thorwirth, F. Lewen, H. Lichau, J. Hahn, J. Gauss, K.M.T. Yamada, G. Winnewisser, *J. Mol. Spectrosc.* **221**, 121 (2003)

G. Winnewisser, F. Lewen, S. Thorwirth, M. Behnke, J. Hahn, J. Gauss, and E. Herbst, Chem. Eur. J 9, 5501 (2003)

O. Baum, M. Koerber, O. Ricken, G. Winnewisser, S. N. Yurchenko, S. Schlemmer, K. M. T. Yamada, and T. F. Giesen, *J. Chem. Phys.* **129**, 224312 (2008).

Approach 0 (2004): Semi-empirical, following the ideas of Hougen:

J.T. Hougen, *Can. J. Phys.* **62,** 1392 (1984). J.T. Hougen, B.M. DeKoven, *J. Mol. Spectrosc.* **98,** 375 (1983).

Ratio of I_a moments of inertia $I_{SH}/I_{total} \approx 1/3$.

```
Pretend that \tau_{\text{HSOH}} \in [-3\pi, 3\pi]
```

Molecule formally has $C_{3v}(M)$ symmetry

Do quantum mechanics under this assumption.

Subject results to "reality check": A 2π rotation of the SH moiety relative to OH moiety must leave wavefunction unchanged.

FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

cis

cis

cis

 6×6 matrix:

$$\begin{pmatrix} Q & W_c & 0 & 0 & 0 & W_t \\ W_c & Q & W_t & 0 & 0 & 0 \\ 0 & W_t & Q & W_c & 0 & 0 \\ 0 & 0 & W_c & Q & W_t & 0 \\ 0 & 0 & 0 & W_t & Q & W_c \\ W_t & 0 & 0 & 0 & W_c & Q \end{pmatrix}$$

K.M.T. Yamada, G. Winnewisser, and P. Jensen, J. Mol. Struct., 695-696, 323 (2004)

Conclusion for HSOH (2009):

The torsional splittings of HSOH in the ground state for each K.

K	$\Delta_{ m tor}$	Observed ^a /MHz	Calculated ^b /MHz
0	$2 W_c + W_t $	64.5	63.9
1	$2 W_c + W_t/2 - D_{ab} $	37.8	33.3
2	$2\sqrt{(W_c - W_t/2 + 2D_{ab})^2 + 3W_t^2/4}$	52.1	50.9
3	$2 W_c + W_t - 9D_{12}^2/2(W_c + W_t) $	62.9	63.5
4	$2\sqrt{(W_c - W_t/2 - 4D_{ab})^2 + 3W_t^2/4}$	57.2	57.3
5	$2\sqrt{(W_c - W_t/2 + 5D_{ab})^2 + 3W_t^2/4}$	49.0	49.2
6	$2 W_c + W_t - 36D_{12}^2/2(W_c + W_t) $		62.1
7	$2\sqrt{(W_c - W_t/2 - 7D_{ab})^2 + 3W_t^2/4}$		61.6
8	$2\sqrt{(W_c - W_t/2 + 8D_{ab})^2 + 3W_t^2/4}$		48.6
9	$2 W_c + W_t - 81D_{12}^2/2(W_c + W_t) $		59.9
10	$2\sqrt{(W_c - W_t/2 - 10D_{ab})^2 + 3W_t^2/4}$		66.6

7

K. M. T. Yamada, Per Jensen, S. C. Ross, O. Baum, T. F. Giesen, and S. Schlemmer, J. Mol. Structure 927, 96-100 (2009).

Approach 1 (2008): *Ab initio* potential energy surface + TROVE calculation of torsional splittings

8

Ab initio potential energy surface:

- CCSD(T) method
- 105000 data points with aug-cc-pVTZ basis set, energies up to 20000 cm⁻¹ above equilibrium
- 10168 data points with aug-cc-PV(Q+d)Z basis set, energies up to 12000 cm⁻¹ above equilibrium
- Simultaneous, weighted fitting to all data points, 762 parameters varied, standard error 2.8 cm⁻¹

R. I. Ovsyannikov, V.V. Melnikov, W. Thiel, Per Jensen, O. Baum, T. F. Giesen, and S. N. Yurchenko, *J. Chem. Phys.* **129**, 154314 (2008). S. N. Yurchenko, A. Yachmenev, W. Thiel, O. Baum, T. F. Giesen, V. V. Melnikov, and Per Jensen: *J. Mol. Spectrosc.* **257**, 57 (2009).

TROVE?

TROVE: Theoretical ROVibrational Energies: Variational calculations of rotationvibration for a general polyatomic molecule in an isolated electronic state

9

Back Select a reference: Merriam-Webster's Collegiate Dictionary 🔽						
Basic Searches Advanced Searches Browse						
Type a word to search for entries where:			a			
Entry word is	Main Entry: Pronunciation:	trove 'trōv	-			
Search Clear Spelling Help	Function: Etymology: Date:	noun short for <i>treasure trove</i> 1888				
Click on a word to view it	l : DISCOVERY, F. 2 : a valuable co	IND llection : TREASURE; <i>also</i> : 1	HAUL, COLLECTION			

S.N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245 126 (2007)

FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

$$\left[\frac{1}{2}\sum_{\lambda=1}^{3N}\sum_{\mu=1}^{3N}\Pi_{\lambda}G_{\lambda,\mu}(\mathbf{r})\Pi_{\mu}+U(\mathbf{r})+V(\mathbf{r})\right]\Psi=E\Psi$$

FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

- The coordinate transformation is done by the program
- "One transformation for all molecules"

$$\left[\frac{1}{2}\sum_{\lambda=1}^{3N}\sum_{\mu=1}^{3N}\Pi_{\lambda}G_{\lambda,\mu}(\mathbf{r})\Pi_{\mu}+U(\mathbf{r})+V(\mathbf{r})\right]\Psi=E\Psi$$

Coordinate transformation: Definitions

$$\left[\frac{1}{2}\sum_{\lambda=1}^{3N}\sum_{\mu=1}^{3N}\Pi_{\lambda}\,\boldsymbol{G}_{\lambda,\mu}(\mathbf{r})\,\Pi_{\mu}+U(\mathbf{r})+V(\mathbf{r})\right]\Psi=E\Psi$$

12

$$G_{\lambda,\mu} = \sum_{\alpha=x,y,z} \sum_{i=1}^{\infty} \frac{s_{\lambda,i\alpha}s_{\mu,i\alpha}}{m_i}$$

Jacobian transformation matrix

$$\hat{P}_{iF} = \sum_{\lambda=1}^{3N} s_{\lambda,iF} \Pi_{\lambda}$$

We solve these linear equations numerically by expanding as polynomials in the small amplitude coordinates.

G.O. Sørensen, Topics in Current Chemistry 82, 99 (1979).

General strategy for calculating the eigenvalues and eigenfunctions of the resulting Hamiltonian

13

Variational calculation = Construction of Hamiltonian matrix in terms of suitable basis set, followed by numerical diagonalization of the matrix

A vibrational basis function is generated as a product of "one-dimensional" (1D) vibrational basis functions, each one describing a single vibrational degree of freedom

A rotation-vibration basis function is obtained by multiplying a vibrational basis function by a symmetric-top eigenfunction.

TROVE: S.N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007).

1D vibrational basis functions

- Harmonic oscillator functions
- Morse oscillator functions

Numerical function generated by Numerov-Cooley integration

Rotation-vibration basis functions

✓ Vibrational basis function $\phi_{vib} = |n_1 \rangle |n_2 \rangle |n_3 \rangle |n_4 \rangle \dots$

15

Rotation-vibration basis function $\phi_{\text{rot-vib}} = \phi_{\text{vib}} \times |J,k,m\rangle$

- Construction of matrix
- (Symmetrization)
- Numerical diagonalization of matrix
- (Calculation of intensities from rotation-vibration eigenfunctions)

Start of parenthetic remark about NH₃ spectrum simulations

S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, Per Jensen, and J. Tennyson, *J. Phys. Chem. A* **113**, 11845-11855 (2009).

NH₃: Absorption intensities at T=300K, 3.25 million transitions

S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, Per Jensen, and J. Tennyson, *J. Phys. Chem.* A **113**, 11845-11855 (2009).

Absorption intensities at *T*=1500K, 1.1 billion transitions, list is essentially finished, collaboration Yurchenko/Tennyson

End of parenthetic remark about NH₃ spectrum simulations

Back to HSOH

FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

20

S. N. Yurchenko, A. Yachmenev, W. Thiel, O. Baum, T. F. Giesen, V. V. Melnikov, and Per Jensen: J. Mol. Spectrosc. 257, 57 (2009).

FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

R. I. Ovsyannikov, V.V. Melnikov, W. Thiel, Per Jensen, O. Baum, T. F. Giesen, and S. N. Yurchenko, *J. Chem. Phys.* **129**, 154314 (2008). O. Baum, M. Koerber, O. Ricken, G. Winnewisser, S. N. Yurchenko, S. Schlemmer, K. M. T. Yamada, and T. F. Giesen, *J. Chem. Phys.* **129**, 224312 (2008).

HSOH rotation-torsion levels: experiment vs TROVE

22

				Term values (cm ⁻¹)		Splitting (cm ⁻¹)			
J	K _a	K _c	Γ	obs	calc	exp-calc	calc	exp	exp-calc
4	0	4	Α'	10.04696	10.05037	-0.00341			
4	0	4	A"	10.04911	10.05252	-0.00341	0.00215	0.00215	0.00000
4	1	3	A"	16.35885	16.36110	-0.00225			
4	1	3	Α'	16.36011	16.36236	-0.00225	0.00126	0.00126	0.00000
4	1	4	Α'	16.21151	16.21314	-0.00164			
4	1	4	A"	16.21277	16.21440	-0.00163	0.00126	0.00127	0.00000
4	2	2	A"	34.99521	34.99509	0.00011			
4	2	2	Α'	34.99698	34.99694	0.00004	0.00184	0.00177	-0.00007
4	2	3	Α'	34.99506	34.99495	0.00011			
4	2	3	A"	34.99683	34.99679	0.00004	0.00184	0.00177	-0.00007
4	3	1	Α'	66.17016	66.17467	-0.00452			
4	3	1	A"	66.17226	66.17681	-0.00455	0.00213	0.00210	-0.00004
4	3	2	A"	66.17016	66.17467	-0.00452			
4	3	2	Α'	66.17226	66.17681	-0.00455	0.00214	0.00210	-0.00004
4	4	0	Α'	109.79888	109.82657	-0.02770			
4	4	0	A"	109.80079	109.82854	-0.02774	0.00196	0.00192	-0.00004
4	4	1	A"	109.79888	109.82657	-0.02770			
4	4	1	Α'	109.80079	109.82854	-0.02774	0.00196	0.00192	-0.00004

Basis set: $v_{\text{HSOH}} \leq 42$

FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY BERGISCHE UNIVERSITÄT WUPPERTAL

R. I. Ovsyannikov, V.V. Melnikov, W. Thiel, Per Jensen, O. Baum, T. F. Giesen, and S. N. Yurchenko, *J. Chem. Phys.* **129**, 154314 (2008). O. Baum, M. Koerber, O. Ricken, G. Winnewisser *et al.*, *J. Chem. Phys.* **129**, 224312 (2008).

HSOH "intensity anomaly" in the rotational spectrum

24

Experiment:

O. Baum, M. Koerber, O. Ricken, G. Winnewisser, S. N. Yurchenko, S. Schlemmer, K. M. T. Yamada, and T. F. Giesen, *J. Chem. Phys.*, **129**, 224312 (2008).

FACULTY OF MATHEMATICS AND NATURAL SCIENCES PHYSICAL AND THEORETICAL CHEMISTRY

 $\overline{\mu}_a, \ \overline{\mu}_b, \ \overline{\mu}_c$ are dipole moment components along the principal axes

 $\overline{\mu}_a$ is small for HSOH

When rotation and vibration are separable, there are *b*-type and *c*-type transitions with the intensity ratio

$$\frac{I_b}{I_c} \approx \frac{\bar{\mu}_b^2}{\bar{\mu}_c^2} \approx 0.28$$
From theoretical dipole moment

b/c intensity ratio is 0.22 for ${}^{r}Q_{0}$ and 0.23 for ${}^{r}Q_{1}$.

26

However, for higher *K*:

O. Baum, M. Koerber, O. Ricken, G. Winnewisser, S. N. Yurchenko, S. Schlemmer, K. M. T. Yamada, and T. F. Giesen, *J. Chem. Phys.*, **129**, 224312 (2008).

TROVE theoretical simulations:

Explanation: Torsion-rotation interaction

For a given K_a -value there are four torsion-rotation states [two K_c -values \times (± torsional parity)]

$$\begin{split} \Psi_{J,K_{a},i}^{A'(1)} &\approx c_{J,K_{a}} | J, K_{a}, 0 \rangle \phi_{K_{a},0}^{(\text{vib})} + s_{J,K_{a}} | J, K_{a}, 1 \rangle \phi_{K_{a},1}^{(\text{vib})}, \\ \Psi_{J,K_{a},i}^{A'(2)} &\approx -s_{J,K_{a}} | J, K_{a}, 0 \rangle \phi_{K_{a},0}^{(\text{vib})} + c_{J,K_{a}} | J, K_{a}, 1 \rangle \phi_{K_{a},1}^{(\text{vib})}, \\ \Psi_{J,K_{a},i}^{A''(1)} &\approx c_{J,K_{a}} | J, K_{a}, 0 \rangle \phi_{K_{a},1}^{(\text{vib})} + s_{J,K_{a}} | J, K_{a}, 1 \rangle \phi_{K_{a},0}^{(\text{vib})}, \\ \Psi_{J,K_{a},i}^{A''(2)} &\approx -s_{J,K_{a}} | J, K_{a}, 0 \rangle \phi_{K_{a},1}^{(\text{vib})} + c_{J,K_{a}} | J, K_{a}, 1 \rangle \phi_{K_{a},0}^{(\text{vib})}, \end{split}$$

where $c_{J,K_a} = \cos(\theta_{J,K_a})$ and $s_{J,K_a} = \sin(\theta_{J,K_a})$ with the mixing angle $\theta_{J,K_a} \in [0, \pi/4]$ so that $c_{J,K_a} \geq s_{J,K_a}$.

"Interaction angle" $\theta_{J,Ka}$

 $\theta_{J,Ka} \approx 0^{\circ}$ for low K_a – no interaction. $\theta_{J,Ka} \approx 45^{\circ}$ for high K_a – 50-50 mixing.

Approximate line strengths

$$S_{A'(1)\leftrightarrow A''(1)} = S_{A'(2)\leftrightarrow A''(2)} = g_{\rm ns} A(J, K_a)$$

$$\times \left[\cos^2 \left(\theta_{J,K_a+1} - \theta_{J,K_a} \right) \left\langle \phi_{K_a,0}^{\rm (vib)} | \bar{\mu}_b | \phi_{K_a+1,0}^{\rm (vib)} \right\rangle^2 + \sin^2 \left(\theta_{J,K_a+1} + \theta_{J,K_a} \right) \left\langle \phi_{K_a,0}^{\rm (vib)} | \bar{\mu}_c | \phi_{K_a+1,1}^{\rm (vib)} \right\rangle^2 \right]$$

30

$$S_{A'(1)\leftrightarrow A''(2)} = S_{A'(2)\leftrightarrow A''(1)} = g_{ns} A(J, K_a)$$

$$\times \left[\cos^2 \left(\theta_{J,K_a+1} + \theta_{J,K_a} \right) \left\langle \phi_{K_a,0}^{(\text{vib})} | \bar{\mu}_c | \phi_{K_a+1,1}^{(\text{vib})} \right\rangle^2 + \sin^2 \left(\theta_{J,K_a+1} - \theta_{J,K_a} \right) \left\langle \phi_{K_a,0}^{(\text{vib})} | \bar{\mu}_b | \phi_{K_a+1,0}^{(\text{vib})} \right\rangle^2 \right]$$

A. Yachmenev, S. N. Yurchenko, Per Jensen, O. Baum, T. F. Giesen, and W. Thiel, *Phys. Chem. Chem. Phys.* 12, 8387 - 8397 (2010).

Approximate line strengths

 $\theta_{J,Ka} \approx \theta_{J,Ka+1} \approx 0^{\circ}$, low K_a

$$S_{A'(1)\leftrightarrow A''(1)} = S_{A'(2)\leftrightarrow A''(2)} = g_{ns} A(J, K_a)$$

$$\times \left[\cos^2 \left(\theta_{J,K_a+1} - \theta_{J,K_a} \right) \langle \phi_{K_a,0}^{(\text{vib})} | \bar{\mu}_b | \phi_{K_a+1,0}^{(\text{vib})} \rangle^2 + \sin^2 \left(\theta_{J,K_a+1} + \theta_{J,K_a} \right) \langle \phi_{K_a,0}^{(\text{vib})} | \bar{\mu}_c | \phi_{K_a+1,1}^{(\text{vib})} \rangle^2 \right]$$

$$0$$

$$S_{A'(1)\leftrightarrow A''(2)} = S_{A'(2)\leftrightarrow A''(1)} = g_{ns} A(J, K_a)$$

$$\times \begin{bmatrix} \cos^2(\theta_{J,K_a+1} + \theta_{J,K_a}) \ \langle \phi_{K_a,0}^{(vib)} | \bar{\mu}_c | \phi_{K_a+1,1}^{(vib)} \rangle^2 \\ + \sin^2(\theta_{J,K_a+1} - \theta_{J,K_a}) \ \langle \phi_{K_a,0}^{(vib)} | \bar{\mu}_b | \phi_{K_a+1,0}^{(vib)} \rangle^2 \end{bmatrix}$$

$$0$$

Approximate line strengths

 $\theta_{J,Ka} \approx \theta_{J,Ka+1} \approx 45^{\circ}$, high K_a

$$S_{A'(1)\leftrightarrow A''(1)} = S_{A'(2)\leftrightarrow A''(2)} = g_{ns} A(J, K_a)$$

$$\times \begin{bmatrix} \cos^2(\theta_{J,K_a+1} - \theta_{J,K_a}) \ \langle \phi_{K_a,0}^{(vib)} | \bar{\mu}_b | \phi_{K_a+1,0}^{(vib)} \rangle^2 \\ + \sin^2(\theta_{J,K_a+1} + \theta_{J,K_a}) \ \langle \phi_{K_a,0}^{(vib)} | \bar{\mu}_c | \phi_{K_a+1,1}^{(vib)} \rangle^2 \end{bmatrix}$$

$$1$$

$$S_{A'(1)\leftrightarrow A''(2)} = S_{A'(2)\leftrightarrow A''(1)} = g_{ns} A(J, K_a)$$

$$\times \begin{bmatrix} \cos^2(\theta_{J,K_a+1} + \theta_{J,K_a}) \ \langle \phi_{K_a,0}^{(vib)} | \bar{\mu}_c | \phi_{K_a+1,1}^{(vib)} \rangle^2 \\ + \sin^2(\theta_{J,K_a+1} - \theta_{J,K_a}) \ \langle \phi_{K_a,0}^{(vib)} | \bar{\mu}_b | \phi_{K_a+1,0}^{(vib)} \rangle^2 \end{bmatrix}$$

$$0$$

b/c intensity ratio is 0.22 for ${}^{r}Q_{0}$ and 0.23 for ${}^{r}Q_{1}$.

33

However, for higher *K*:

O. Baum, M. Koerber, O. Ricken, G. Winnewisser, S. N. Yurchenko, S. Schlemmer, K. M. T. Yamada, and T. F. Giesen, *J. Chem. Phys.*, **129**, 224312 (2008).

Thanks & Acknowledgments

The principal doer:

34

Sergei N. Yurchenko, Wuppertal, Ottawa, Mülheim, Dresden

Other doers:

Oliver Baum, Cologne Vladlen Melnikov, Wuppertal Roman Ovsyannikov, Wuppertal Andrei Yachmenev, Mülheim

Fellow ponderers: Thomas Giesen, Cologne Walter Thiel, Mülheim

Thanks for support from the European Commission, the German Research Council (DFG), and the Foundation of the German Chemical Industry (Fonds der Chemie).