

And now for something completely different...

Local modes in vibrational (and rotational) spectroscopy

(Picture courtesy of Python M)

The Wuppertal monorail

Vibrational energies of small molecules

The lowest vibrational energies for several simple molecules.

H-X stretching vibrations modelled by Morse oscillators:

Hamiltonian: $\widehat{H}_{Morse}^{(j)} = -\frac{\hbar^2}{2\mu} \frac{\partial^2}{\partial r_i^2} + V_{Morse}(r_j).$ $\mu = \frac{m_{\rm H} m_{\rm X}}{m_{\rm H} + m_{\rm X}}$ 6.0 5.0 4.0 energy (eV) 3.0 Do $V_{\text{Morse}}(r_j) = D_e y_j^2$ D۵ 2.0 1.0 $y_i = 1 - \exp(-a[r_i - r_e]).$ 0.0 0.0 1.0 2.0 3.0 4.0 5.0 R (Å) Copyright 2000 B.M. Tissue

EIGENVAIUES:

$$\omega_{\rm M} = \frac{a}{2 \pi c} \sqrt{\frac{2 D_{\rm e}}{\mu}} \quad x_{\rm M} = -\frac{a^2 \hbar}{4 \pi \mu c} < 0.$$

$$E_{n_j}/bc = \omega_{\rm M} \left[n_j + \frac{1}{2} \right] + x_{\rm M} \left(n_j + \frac{1}{2} \right)^2,$$

$$n_j = 0, 1, 2, 3, \dots$$

HCAO model for H₂X molecule stretch (Harmonically Coupled Anharmonic Oscillators)

7

Diagonalized in basis set of products of Morse-oscillator eigenfunctions

[1] Child MS, Lawton RT. *Faraday Discuss Chem Soc* 1981, 71:273–285.
[2] Mortensen OS, Henry BR, Mohammadi MA. *J Chem Phys* 1981, 75:4800–4808
[3] Child MS, Halonen L. *Adv Chem Phys* 1984, 57:1–58

HCAO matrices

FIGURE 2 Schematic representation of the HCAO energy matrix for N = 4. The horizontal lines represent the diagonal matrix elements and the off-diagonal elements are indicated. Note that, by definition, the parameter $x_{\rm M} < 0$.

$$\lambda = \frac{\omega_{\rm M}}{2} \left(\frac{C_{rr'}}{2 D_{\rm e}} - \frac{m_{\rm H}}{m_{\rm H} + m_{\rm X}} \cos \rho_{\rm e} \right).$$

FIGURE 3 | Schematic representation of the HCAO energy matrix for N = 5. The horizontal lines represent the diagonal matrix elements and the off-diagonal elements are indicated. Note that by definition, the parameter $x_{\rm M} < 0$.

Vibrational energies patterns: Normal mode, Local mode...

Vibrational intensities

Empirical fact: Stretching part of

dipole moment function modelled

well by "Molecular Bond" function

Favours vibrational transitions to states with all *N* excitation quanta localized in one bond.

[1] HALONEN, L., 1998, Adv. chem. Phys., **104**.

Summary:

Excited stretching states form "polyads" with the structure predicted by HCAO

Observed transitions from the vibrational ground state end in lowest levels of polyad.

Results transferable to molecules with n > 2 equivalent H-X stretching vibrations.

Example experiment: ICLAS

(Intracavity Laser Absorption Spectroscopy)

- Extremely sensitive
- Absoption path lengths of order-of-magnitude 100 km

Campargue A: <u>http://www.chem.uni-wuppertal.de/sphers/han-sur-lesse/campargue/camparguenew.html</u>
 Bertseva E, Kachanov AA, Campargue A. *Chem Phys Lett* 2002, 351:18–26.

Example experiment: ICLAS for H₂S

(Intracavity Laser Absorption Spectroscopy)

[1] Ding Y, Naumenko O, Hu S-M, Bertseva E, Campargue A. J Mol Spectrosc 2003, 217:222–238.

Example experiment: ICLAS for H₂S

(Intracavity Laser Absorption Spectroscopy)

[1] Ding Y, Naumenko O, Hu S-M, Bertseva E, Campargue A. J Mol Spectrosc 2003, 217:222–238.

Rotational Energy Level Clusters

- 1972 Dorney and Watson
- 1978 Zhilinskii and Pavlichenkov
- 1978 Harter and Patterson
- 1991 Lehmann
- 1992 Kozin et al
- 1993 Kozin and Jensen
- 1994 Jensen and Bunker
- 1996 Kozin et al
- 1997 Jensen et al
- 2000 Jensen

2012 Jensen

8-fold and 6-fold clusters CH₄ H_2O 4-fold clusters (E_{rb}) Rotational energy surfaces and clusters Local mode theory and clusters H₂Se 4-fold clusters observed H_2Se 4-fold cluster theory (E_{rbs}) H₂X 4-fold cluster symmetry H_2Te 4-fold clusters (exp and theory) Review paper on 4-fold clusters Review paper on LMT and clusters [Mol. Phys. 98, 1253-1285 (2000)] Another review paper on LMT and clusters

[*WIREs Comput. Mol. Sci. (Wiley Interdisciplinary Reviews)* **2**, 494–512 (2012)]

H₂Te Rigid Rotor Energy Levels

Actual H₂Te Energy Levels

18

 $\Gamma_{\text{Cluster}} = A_1 \oplus A_2 \oplus B_1 \oplus B_2 \quad \text{in} \quad C_{2v}(M)$

Programs: XY3 and TROVE

(Theoretical Rotation-Vibration Energies)

XY3: Rotation-vibration energies for pyramidal, ammonia-type molecule in isolated electronic state, calculated variationally.

[1] H. Lin *et al.*, *J. Chem. Phys.* **117**, 11265 (2002)
[2] S.N. Yurchenko *et al.*, *Mol. Phys.* **103**, 359 (2005) and references given there.

TROVE: Rotation-vibration energies for any molecule in isolated electronic state, calculated variationally.

[3] S.N. Yurchenko, W. Thiel, and P. Jensen, *J. Mol. Spectrosc.* **245**, 126 (2007)

Variational rotation-vibration calculations for PH₃

20

 $J \leq 80$

Vibrational basis set:

$$2(v_1 + v_2 + v_3) + v_{inv} + V_{bend} \le 6$$

Potential energy surface:

cc-pwCVTZ [1] refined by fitting to experimental vibrational term values [2]

[1] D. Wang, Q. Shi, and Q.-S. Zhu, *J. Chem. Phys.*, **112**, 9624 (2000)
[2] S.N. Yurchenko *et al.*, *Chem. Phys.* **290**, 59 (2003)

Watson-type Hamiltonian for PH₃

L. Fusina, G. Di Lonardo, J. Mol. Struct. 517-518, 67 (2000)

Rotational coordinates

xyz is molecule-fixed; XYZ is space-fixed

- (θ, φ, χ) define orientation of molecule (*xyz*) relative to laboratory (*XYZ*).
- (θ, χ) define orientation of Z axis relative to molecule (xyz).

For a rovibronic eigenstate Φ_i $F_{J,m}(\theta, \chi) = \int (\Phi_i)^* \Phi_i \sin \theta \, dV$ Δ Integration over all vibronic coordinates and φ

is the probability distribution for the orientation of the Z axis relative to the molecule.

 $F_{J,m}(\theta,\chi)$

"Top cluster states" for J = m = 40, vibrational ground state of PH₃

Primitive cluster states $|j PCS \rangle$

27

First symmetrize, e.g.

$$\Psi_{1}^{A_{1}} = \frac{1}{\sqrt{6}} \left(|1 \text{ PCS}\rangle + |2 \text{ PCS}\rangle + |3 \text{ PCS}\rangle + |4 \text{ PCS}\rangle + |5 \text{ PCS}\rangle + |6 \text{ PCS}\rangle \right)$$
$$\Psi_{6}^{A_{2}} = \frac{1}{\sqrt{6}} \left(|1 \text{ PCS}\rangle + |2 \text{ PCS}\rangle + |3 \text{ PCS}\rangle - |4 \text{ PCS}\rangle - |5 \text{ PCS}\rangle - |6 \text{ PCS}\rangle \right)$$
with similar expressions for the *E* functions....

PH₃ intensity calculations

Ab initio (CCSD(T)/aug-cc-pVTZ) ² dipole moment surfaces ²

Rotation-vibration wavefunctions from the variational calculation

Experimental data from L. R. Brown, R. L. Sams, I. Kleiner, C. Cottaz, and L. Sagui, *J. Mol. Spectrosc.* **215**, 178-203 (2002)

PH₃ cluster transitions

Large line strengths at high *J*

Can the lower states be populated somehow?

Similar effects for XHD₂ or XH₂D molecules?

XH₂D: Cluster-free molecules

XHD₂: Molecules with rotational energy cluster formation

Conclusions

Local mode phenomena manifest themselves as

35

- clustering of vibrational energy levels at high vibrational excitation
- clustering of rotation—vibration energy levels at high rotational excitation.

Thus local mode behaviour is induced by both vibrational and rotational excitation.

Thanks & Acknowledgments

36

The principal doer: <u>Sergei N. Yurchenko</u>, Wuppertal, Ottawa, Mülheim, Dresden Other doers: <u>Miguel Carvajal</u>, Huelva

Hai Lin, Denver Serguei Patchkovskii, Ottawa A fellow ponderer:

Walter Thiel, Mülheim

Thanks for support from the European Commission, the German Research Council (DFG), and the Foundation of the German Chemical Industry (Fonds der Chemie).