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Fundamentals: 

The kinetic theory of gases explains the macroscopic behavior of gases, in particular their 

thermal properties, from the motion of the gas particles. Although the movement of an 

individual particle cannot be tracked, it is still possible to make accurate statistical 

statements about the whole, due to the very large number of particles (1 mole = 6.023 x 1023 

particles) and their relatively high speed. To this end, the following simplifications are made, 

among others, which apply strictly only to the ideal gas, but are also sufficiently well fulfilled 

for many real gases at not too high pressures and not too low temperatures: 

1) The particles are so small compared to their distances that they can be treated as 

dimensionless mass points. 

2) The particles do not exert any mutual forces on each other, except in the case of 

collisions. 

3) The conservation laws (momentum, energy) of classical mechanics apply to the 

collision of two particles and to the collision of a particle with the wall of a vessel. 

4) At temperature equilibrium, the motion of the particles is completely random, i.e. no 

spatial direction is favored. 

5) All particles have a temperature-dependent velocity distribution (Maxwell-Boltzmann). 

 

These general basic assumptions can be used to derive characteristic quantities to describe 

the behavior of the gas. Some of these are: 
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-  the pressure:    (1) 

   

  where     N  = number of particles per unit volume 

      m  = mass of particles 

     = mean of the squares of all velocities 

According to the ideal gas law:  (1a)   p = N * k * T 

 

-  Characteristic velocities of gas particles: 

most frequent velocity:   (2a) m/kT2 = uh
   

average velocity:    (2b)  m/kT
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Root of the averaged  velocity squares:  (2c)   m/kT3 =u 2   

 

-  the dynamic viscosity:   (3)   =  
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where d = particle diameter and  π * d2 = impact cross-section for a particle 

 

-  the number of collisions of one particle with all others per second 
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-  the number of all collisions per second and cm3: 

      (6)  Z11 =  
1
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When one layer of gas moves along another, the particles that fly from one layer into the 

second through the imaginary separating surface (diffusion) cause the two to interlock to a 

certain extent. This tends to slow down the faster layer and accelerate the slower one. The 
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quantity “viscosity” () is introduced as a measure of the force that influences the mutual 

displacement. In the SI system, the unit of viscosity is the Pascal second (Pa*s): 

 

 (7)  1 Pa * s    =   1 N * s * m-2    =    1 kg * s-1 * m-1 

The older unit Poise (P, from Poiseuille) has the following relationship: 

 (8)  1 P   =   0.1 Pa * s   =   1 g * s-1 * cm-1 

Here, 1 Pascalsecond is equal to the dynamic viscosity of a laminar flowing homogeneous 

fluid (liquid, gas) in which the shear stress 1 Pa prevails between two layers arranged in 

parallel at a distance of 1 m with a velocity difference of 1 m * s-1. 

Under normal conditions (0 °C, 1 atm), the viscosity of many gases is in the order of 10-5 

Pa*s, that of liquids between 1 and 10-4 Pa*s. 

In contrast to liquids, the viscosity of the ideal gas increases with increasing temperature  

(          ) . It is not dependent on pressure, as the effect of the change in density with 

pressure is compensated by the change in mean free path that occurs. 

The viscosity of real gases shows above all a stronger dependence on temperature and at 

higher gas densities also a dependence on pressure. This can be explained by larger 

intermolecular interactions and a more complicated form of momentum transport than in 

the ideal gas.  

For a laminar stationary flow through a capillary, the following applies according to Hagen 

and Poiseuille (for derivation see Gerthsen): 

 

 (9)       where T = const. 

 

Here V is the volume of fluid flowing through a capillary tube of radius r and length l in time t 

under the effect of the pressure difference p.  

Eq. (9) assumes that the entire pressure energy is converted into heat by friction and that 

the flow in each cross-section has a parabolic Poiseuille velocity distribution over its entire 

length. Strictly speaking, equation (9) only applies to liquids; for gases, the expansion due to 

the pressure drop and the sliding along the wall must also be taken into account.  

However, these corrections are generally so small that Eq. (9) is a useful approximation. 

However, if the mean free path of the gas particles reaches the order of magnitude of the 

vessel dimension, the amount of gas flowing through the capillary will be much greater than 

calculated by Eq. (9). 

 

 

  






l8

tr4p
V



Task: 

Using a Rankine viscometer (Fig. 1) and a stopwatch, determine the times required for the 

gases N2, He and CO2 to flow through a capillary. Using the known dynamic viscosity of N2  

 (N2) = 1.748 * 10-5  Pa*s at 20 °C), gas kinetic quantities are calculated. 

 

The experimental setup: 

In the Rankine viscometer, the gas to be tested is forced through a capillary using a drop of 

mercury in a circuit (Fig. 1). The markings S1 and S2 delimit the measuring section. 

 

 

Procedure: 

1) Before connecting the gas line to the 

apparatus, familiarize yourself with the safe 

handling of the cylinder valves as instructed 

by the assistant!  

Practice several times! 

2) The drop of mercury is placed in one of the 

bulges in the pipe extension below (above) S1 

or S2. 

3) The taps H1 and H2 are opened. The gas 

line from the nitrogen cylinder is connected 

to H1 (or H2 ). The apparatus is flushed with 

nitrogen for a few minutes. 

(Caution! Do not let it flow in if the 

overpressure is too high!)  

 

Then stop the gas supply and close the two 

taps. 

4) Quickly turn the apparatus 180 degrees. 

Use the stopwatch to messure the falling 

time of the drop of mercury between the 

markings S1 and S2 (or S2 and S1). This 

procedure is repeated six times. 

5) For the gases CO2 and He,  

the points 2) to 4) are carried out accordingly.  Fig. 1:  Schematic diagram of a  

                      Rankine viscometer 

  



Evaluation: 

 

1)  The Hagen-Poiseuille law applies to the fall time of the drop of mercury: 

 

(10)  

 

Since all variables except  and t remain constant due to the construction of the Rankine 

viscometer, relative values of the dynamic viscosity can be calculated very easily by 

measuring the time.  

It is:  (11)   t1 / t2 = 1 / 2  

 

2)  Determine the arithmetic mean value for the falling time of the drop of mercury from 

your multiple measurements for each gas. 

3)  Using the mean values, calculate the dynamic viscosity of CO2 and He relative to that 

of nitrogen. 

4)  Using equations (1) to (6), calculate the characteristic values u, , d, Z1 and Z11 for all 

three gases. Clearly present the results together with the viscosities in a table. 

5)  Discuss the accuracy of your measurement: 

a) What is the relative and absolute error of the values obtained for the dynamic 

viscosity? 

b) Obtain data on the temperature dependence of the dynamic viscosity and 

estimate how large the error will be with a temperature change of 1 grd! 

 

Accessories: 

Rankine viscometer, stopwatch, connection line for the gas cylinders. 
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