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Dynamic viscosity of gases (Hagen-Poiseuille's law)
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Fundamentals:

The kinetic theory of gases explains the macroscopic behavior of gases, in particular their
thermal properties, from the motion of the gas particles. Although the movement of an
individual particle cannot be tracked, it is still possible to make accurate statistical
statements about the whole, due to the very large number of particles (1 mole = 6.023 x 10?3
particles) and their relatively high speed. To this end, the following simplifications are made,
among others, which apply strictly only to the ideal gas, but are also sufficiently well fulfilled
for many real gases at not too high pressures and not too low temperatures:

1) The particles are so small compared to their distances that they can be treated as
dimensionless mass points.

2) The particles do not exert any mutual forces on each other, except in the case of
collisions.

3) The conservation laws (momentum, energy) of classical mechanics apply to the
collision of two particles and to the collision of a particle with the wall of a vessel.

4) At temperature equilibrium, the motion of the particles is completely random, i.e. no
spatial direction is favored.

5) All particles have a temperature-dependent velocity distribution (Maxwell-Boltzmann).

These general basic assumptions can be used to derive characteristic quantities to describe
the behavior of the gas. Some of these are:
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- the pressure: (1)
where N = number of particles per unit volume
m = mass of particles

2
U = mean of the squares of all velocities

According to the ideal gas law: (1a)

- Characteristic velocities of gas particles:

most frequent velocity: (2a)

average velocity: (2b)
Root of the averaged velocity squares: (2c)
- the dynamic viscosity: (3)
- the mean free path: (4)
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where d = particle diameter and 1 * d? = impact cross-section for a particle

- the number of collisions of one particle with all others per second

(5)

- the number of all collisions per second and cm?3:
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E *N* Zl (why factor% ?)

When one layer of gas moves along another, the particles that fly from one layer into the
second through the imaginary separating surface (diffusion) cause the two to interlock to a
certain extent. This tends to slow down the faster layer and accelerate the slower one. The



quantity “viscosity” (n) is introduced as a measure of the force that influences the mutual
displacement. In the Sl system, the unit of viscosity is the Pascal second (Pa*s):

(7) 1Pa*s = IN*s*m? = 1kg*s-1*m
The older unit Poise (P, from Poiseuille) has the following relationship:
(8) 1P = 0.1Pa*s = 1g*st*cmt

Here, 1 Pascalsecond is equal to the dynamic viscosity of a laminar flowing homogeneous
fluid (liquid, gas) in which the shear stress 1 Pa prevails between two layers arranged in
parallel at a distance of 1 m with a velocity difference of 1 m * s,

Under normal conditions (0 °C, 1 atm), the viscosity of many gases is in the order of 10~
Pa*s, that of liquids between 1 and 10 Pa*s.

In contrast to liquids, the viscosity of the ideal gas increases with increasing temperature
(n o VT ). Itis not dependent on pressure, as the effect of the change in density with
pressure is compensated by the change in mean free path that occurs.

The viscosity of real gases shows above all a stronger dependence on temperature and at
higher gas densities also a dependence on pressure. This can be explained by larger
intermolecular interactions and a more complicated form of momentum transport than in
the ideal gas.

For a laminar stationary flow through a capillary, the following applies according to Hagen
and Poiseuille (for derivation see Gerthsen):
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where T = const.

(9)

Here V is the volume of fluid flowing through a capillary tube of radius r and length | in time t
under the effect of the pressure difference Ap.

Eqg. (9) assumes that the entire pressure energy is converted into heat by friction and that
the flow in each cross-section has a parabolic Poiseuille velocity distribution over its entire
length. Strictly speaking, equation (9) only applies to liquids; for gases, the expansion due to
the pressure drop and the sliding along the wall must also be taken into account.

However, these corrections are generally so small that Eq. (9) is a useful approximation.
However, if the mean free path of the gas particles reaches the order of magnitude of the
vessel dimension, the amount of gas flowing through the capillary will be much greater than
calculated by Eqg. (9).



Task:

Using a Rankine viscometer (Fig. 1) and a stopwatch, determine the times required for the
gases N, He and CO; to flow through a capillary. Using the known dynamic viscosity of N3
n (N2) = 1.748 * 10° Pa*s at 20 °C), gas kinetic quantities are calculated.

The experimental setup:

In the Rankine viscometer, the gas to be tested is forced through a capillary using a drop of
mercury in a circuit (Fig. 1). The markings S1 and S, delimit the measuring section.

Procedure:

1) Before connecting the gas line to the
apparatus, familiarize yourself with the safe
handling of the cylinder valves as instructed
by the assistant!

Practice several times!

2) The drop of mercury is placed in one of the
bulges in the pipe extension below (above) S1
orSs.

3) The taps H1 and H; are opened. The gas
line from the nitrogen cylinder is connected
to Hi (or Hz ). The apparatus is flushed with
nitrogen for a few minutes.

(Caution! Do not let it flow in if the
overpressure is too high!)

Then stop the gas supply and close the two
taps.

4) Quickly turn the apparatus 180 degrees.
Use the stopwatch to messure the falling
time of the drop of mercury between the
markings S1 and S (or Sz and Si). This
procedure is repeated six times.

5) For the gases CO; and He,

the points 2) to 4) are carried out accordingly.
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Fig. 1: Schematic diagram of a
Rankine viscometer



Evaluation:

1) The Hagen-Poiseuille law applies to the fall time of the drop of mercury:
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Since all variables except n and t remain constant due to the construction of the Rankine
viscometer, relative values of the dynamic viscosity can be calculated very easily by

measuring the time.

Itis: (12) t1/t=m/Mm

2) Determine the arithmetic mean value for the falling time of the drop of mercury from
your multiple measurements for each gas.

3) Using the mean values, calculate the dynamic viscosity of CO, and He relative to that
of nitrogen.
4) Using equations (1) to (6), calculate the characteristic values u, A, d, Z1 and Z11 for all

three gases. Clearly present the results together with the viscosities in a table.
5) Discuss the accuracy of your measurement:

a) What is the relative and absolute error of the values obtained for the dynamic
viscosity?

b) Obtain data on the temperature dependence of the dynamic viscosity and
estimate how large the error will be with a temperature change of 1 grd!

Accessories:

Rankine viscometer, stopwatch, connection line for the gas cylinders.



