

Introduction

• MS Application:

In situ product study of the OH radical initiated gas phase degradation of atmospherically relevant compounds.

• Problem:

lon transformation processes occurring between ionization and detection.

\rightarrow Significant loss of important mass spectrometric information.

• Approach:

VUV photoionization within the transfer capillary which separates the atmospheric pressure region and the first differential pumping stage.

Effective reduction of the \rightarrow time between ionization and detection at still appreciable neutral analyte density.

Methods

MS	Bruker esquire6000 quadru- pole ion trap. The transfer capillary and the home-built laminar flow (LF) ion source were prepared with orifices for VUV radiation entry.
Radiation source	homebuilt argon spark dis- charge lamps
Power supply	homebuilt with an HV power supply of an OPTex excimer laser (HPE CC400)
Spectro- scopy	UV/Vis spectrometer (AvaSpec-3648) VUV spectrometer (ARC VM- 502)
Gas phase samples	Large volume photoreactor (1080 I) for gas phase degra- dation studies of atmospheri- cally relevant compounds with OH and CI radicals
Chemicals	p-xylene, MeONO, NO

VUV Photoionization within Transfer Capillaries of Atmospheric Pressure Ionization Sources

<u>Hendrik Kersten¹</u>; Walter Wissdorf¹; Klaus J. Brockmann¹; Thorsten Benter¹; Rob O'Brien²

Physical & Theoretical¹ Chemistry Wuppertal, Germany

OKANAGAN

Conclusions

- Combination of a spark discharge lamp (Lightning Source) mounted windowless on a transfer capillary:
- \rightarrow High photon flux on a small, precisely selectable illuminated area.
- \rightarrow Discharge in an Argon flow (300 ml/min @ 200-1000 mbar). No perturbation of the analyte flow.
- \rightarrow Broad Ar₂^{*} excimer emission (127 ± 13) nm.
- \rightarrow Impact of Ar meta-stables?
- Effective reduction of ion transformation processes.
- Ionization occurs at still appreciable neutral analyte density, as compared to conventional high-vacuum ionization.
- Monitoring of degradation product studies is enhanced. \rightarrow Preservation of MS information due to kinetically controlled ion distribution, demonstrated here for the negative ionization mode.

Literature

- Kersten, H.; Funcke, V.; Lorenz, M.; Brockmann, K.; Benter, T D'Brien, R., Evidence of Neutral Radical Induced Analyte Ion Tran formations in APPI and Near-VUV APLI. Journal of the American Society for Mass Spectrometry 2009, 20, (10), 1868-1880
- Kersten, H.; Carter, D.; Brockmann, K.J.; Benter, Th.; O'Brien, R. Insights gained using Atmospheric Pressure Electrical Discharge a a photon source for Atmospheric Pressure Photoionization Mass Spectrometry. Poster presented of the 18th International Mass Spectrometry Conference; Bremen, Germany, August 2009.
- Wutz, M.; Adam, H; Walcher, W. Theorie und Praxis der Vakuum*technik, 4th ed.;* Friedr. Vieweg und Sohn; Braunschweig/Wiesbaden, Germany, **1988**.
-) Michalke, A. A note on the viscous pipe-flow of a compressible fluid with heat-transfer. *Ing. Arch.* **1987**, 57, 377-392.

Acknowledgement

This work was performed with financial support from the German Research Foundation (DFG) under contracts BE2124/6-1 and BE2124/4-1.