Novel Laminar Flow Ion Sources for LC- and GC-API MS

<u>Ian Barnes¹</u>; Hendrik Kersten¹; Walter Wissdorf¹; Thorsten Pöhler²; Herwart Hönen²; Sonja Klee¹; Klaus J. Brockmann¹; Thorsten Benter¹

Fluid dynamic simulations of common API sources

Time integrated trajectories

- \rightarrow Analyte dwell times of the order of
- \rightarrow Feasible explanation for observed memory effects

Neutral analyte distribution

- \rightarrow Nearly Isotropic distribution in the entire ion source \rightarrow Feasible explanation for
- elevated background signals

Simulation Boundary conditions:

- \rightarrow Gas flow of 1.4 L/min, determined by the MS \rightarrow Tube i.d. of 9 mm, conically shaped end with 0.8 mm
- orifice

Results:

- \rightarrow Typical Hagen-Poiseuille flow profile upstream of the capillary entrance region
- \rightarrow Loss of ions occurs mainly by diffusion, as expected

Compatible ionization methods:

✓ APLI; DA-APLI \checkmark APPI; DA-APPI ✓APCI

APCI needles Analyte inlet 着 Laser beam

Physical & Theoretical ¹ Chemistry Wuppertal, Germany

Conclusions

- Benefits of Laminar Flow API sources:
- \rightarrow Controllable flow
- \rightarrow High ion transmission efficiency into the MS
- \rightarrow Signifcant increase of the DIAV for APLI
- \rightarrow Efficient irradiation of the sample flow (APPI and APLI)
- \rightarrow Efficient heating
- \rightarrow Easy cleaning
- \rightarrow Sidearm design allows for multiple inlets (e.g., gas phase reagents)

• Fully compatible:

<u>Ionization</u>

- \rightarrow APLI, DA-APLI
- \rightarrow APPI, DA-APPI
- \rightarrow APCI

Analyte inlet

- \rightarrow Gas phase sampling
- \rightarrow GC (in progress)
- \rightarrow LC (in progress)

Literature

- Constapel, M.; Schellenträger, M.; Schmitz, O. J.; Gäb, S.; Brockmann, K. J.; Giese, R.; Benter, Th. Rapid Commun. Mass Spectrom, 2005, 19, 326-336. Kersten, H.; Funcke, V.; Lorenz, M.; Brockmann, K.; Benter, T.; O'Brien, R.
- Evidence of Neutral Radical Induced Analyte Ion Trans-formations in APPI and Near-VUV APLI. Journal of the American Society for Mass Spectrometry **2009**, 20, (10), 1868-1880 Schiewek, R.; Schellenträger, M.; Mönnikes, R.; Lorenz, M.; Giese, R.;
- Brockmann, K. J.; Gäb, S.; Benter, Th.; Schmitz, O. J. Ultrasensitive determination of polycyclic aromatic compounds with atmospheric-pressure laser ionization as an interface for GC/MS. *Anal. Chem.* **2007**, 79, 4135-4140.
- Benter, Th.; Schmitz, O. J. Atmospheric Pressure Laser Ionization. In Advance in LC-MS instrumentation, Journal of Chromatography Library 72, Cappiello A. Ed.; 2007.
- Benter, Th. Atmospheric Pressure Laser Ionization. In The Encyclopedia of Mass Spectrometry, Gross, M. L., Caprioli, R. N., Eds., 1st ed.; Elsevier: Oxford, U.K.,
- Lorenz, M.: Schiewek, R.: Brockmann, K. J.: Schmitz, O. J.; Gäb, S.; Benter, Th Spatially resolved APLI measurements. J. Am. Soc. Mass Spectrom. 2008. 19
- Schrader, W.: Panda, S. K.: Brockmann, K. J.: Benter, Th. Characterization of non-polar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS). Analyst 2008, 133, 867-869.
- Schiewek, R.: Lorenz, M.: Giese, R.: Brockmann, K.; Benter, T.; Gäb, S.; Schmit O. J. Development of a multipurpose ion source for LC-MS and GC-API MS. Anal. Bioanal. Chem. 2008, 392, 87-96.
- Schiewek. R.: Mönnikes, R.; Wulf, V.; Gäb, S.; Brockmann, K. J.; Benter, Th Schmitz, O. J. A Universal Ionization Label for the APLI-(TOF)MS Analysis of Small Molecules and Polymers. Angew. Chemie-Int. Ed. 2008, 47, 9989-9992

Acknowledgement

Financial support is gratefully acknowledged: **DFG** BE2124/6-1 and BE2124/4-1 and **Bruker** Daltonics.