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Conclusions

070 in session TPO4 for details) we propose
that such a model driven design process is
possible and feasible.
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Experimental Methods

Particle Image Velocimeiry Setup:

Flow at operation point of the MPIS

System: 2D PIV (LaVision, Goettingen, Germany)

(ESI, Portland, USA)

g et | . - : : : . . SNT . . : 4) Jeong, J., Hussain, F., On the identifcation of a vortex
v e In figur the two-dimensional flow pattern in the mi _ - : :

Laser: New Wave 120 mJ YAG double pulse laser /e gure 5 the two-dimensional Tlow patte € mia | The inclination of the dry-gas jet supports the generation of Journal of Fluid Mechanics, 1995, 285, 69-94
9y section of the lon source is presented. It shows a strongly a horse shoe-shaped vortex, which was also discernible In 5) Westerweel, J. Fundamentals of digital particle image

iInhomogenious  velocity vector distribution. The

the validation results. Fig. 6 shows the three dimensional velocimetry J. Measurement Sci. Technol. 1997, 8, 1379-

PIV.camera: dual frame technology, 12 bif, deflection of the analyte gas jet at the bottom enforces shape of this vortex in terms of an isosurface of A, = -80 s=2. 1392. | o
1376 x 1040 Pixel (LaVision, Goettingen, the generation of a large-scale vortex in the left part of Negative values of A, characterize closed vortical regions %) mﬁgfee/sr'ffp'r%nzwfﬁé'fe(?%gffgﬁfﬁyﬁgﬁf%’Lﬁ%ﬁﬁf&61394,
Germany) fhe ion source. Since only the right-hand side of the with a pressure minimum in the vortex core. Details of the 32 1598-1605.

analyte gas jet is fed by dry-gas strong mixing of dry-
gas and analyte gas is not taking place. Therefore the
vortex supports a higher concentration of analyte gas in
the left part of the ion source.

A second, small-scale vortex is present on the top of the
p— dry-gas jet. This is the result of an effect known from
S torus-shaped smoke-rings. In this case, the torus-shape is
broken by the analyte gas jet (see section “Neutral
Analyte distribution” for details).

definition of A, are found in [4]. 7)
The conftour demonstrates the mixing of dry-gas and
analyte gas enforced by this vortex. With an initial analyte
concentration of 0 in the forus center, which is coherent
with the core of the dry-gas jet, the analyte concentration

| increases due to diffusion processes and is fransported

g towards the spray shield by the vortical motion. Thus the
¢ outflow vortex considerably changes the concenfration of analyte

atmosphere  gas in front of the spray shield.
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Seeding generator: DEHS oil, >108 particles/cm3
(Topas, Dresden, Germany)

spray shield

Operating point adjustment:

Volume flows, pressures and temperatures were
measured for calculation of the
corresponding mass flows.
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lon Source Chamber:

Figure 5) 2D flow pattern within the ion source

Bruker multipurpose ion source (MPIS) Figure 6) Horse-shoe shaped vortex in front of spray-shield
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