Measurements of HONO during OASIS in Barrow, Alaska

G. Villena Tapia¹, P. Wiesen¹, F. M. Flocke², A. J. Weinheimer², D. D. Montzka², D. J. Knapp², S. R. Hall², K. Ullmann², L. Mauldin², E. Kosciuch², J. McGrath², H. J. Beine³, R. M. Staebler⁴, J. Kleffmann¹

¹ Physical Chemistry Depart., University of Wuppertal, Germany.
² National Center for Atmospheric Research (NCAR), Colorado, USA.
³ Land, Air and Water Resources, University of California Davis, USA.
⁴ Environment Canada, Toronto, Canada.

kleffman@uni-wuppertal.de

Introduction

- Nitrous Acid (HONO) direct OH source: HONO + hv (<390 nm) → NO + OH
- OH: "cleaning detergent of the atmosphere"
- For polar conditions HONO was proposed to be one of the most important OH sources
- Different heterogeneous formation mechanisms proposed: $NO_3^- + hv$ → $NO_2^- (\rightarrow HONO) + O$ $2 NO_2 + H_2O$ → $HONO + HNO_3$ $NO_2 + humic acid + hv$ → HONO + products
- Still under discussion...

- Polar HONO was mostly measured by "wet chemical" instruments (mistchambers, denuders, coil/HPLC...)
- The only polar HONO intercomparison show a factor of 7 overestimation of a mist-chamber/IC compared to the spectroscopic LIF technique (Liao et al., 2006)
- Models indicate strong overestimation of measured polar HONO levels (e.g. Bloss et al., 2006)
- → "Wet chemical" HONO measurements may be affected by strong interferences
- Still under discussion...

- Interference-free measurement of HONO in polar regions during OASIS in Barrow, Alaska
- Has [HONO] been overestimated before?
- Is HONO a net source of OH radicals in polar regions?
- What is the formation mechanism of HONO in polar regions?

Experimental

- HONO was measured by the LOPAP instrument
- interferences are corrected
- no sampling lines
- validated (DOAS)
- extremely sensitive: DL: 0.2 pptV

Experimental

Experimental

- Other parameters used for evaluation:
- OH (NCAR)
- NO, NO₂, NO_y (NCAR)
- J-values (NCAR)
- O_3 (NCAR)
- meteorological data (Environment Canada)

Results

- HONO was measured from 13th March 14th April
- Very high concentrations often observed

date

Results

• High correlation with CO

→ Local emissions from BARC and Barrow...

→ Only "clean" days considered

Results

• "Average" clean day

• OASIS average clean day:

- HONO/NO_x = $5.3 \pm 2.8 \%$
- HONO/NO_v = 1.0 ± 0.5 %
- In excellent agreement with other remote LOPAP data:

- Zugspitze: HONO/NO_x \neq 2.5 %, HONO/NO_y \neq 1.0 %
- Jungfraujoch: HONO/NO_x = 4.6 % HONO/NO_v = 1.1 %
- Factor ≥4 lower compared to most other polar data
- $HONO/NO_x = 20-100 \%$
- Was explained by interferences (Kleffmann and Wiesen, 2008)
- → Should be corrected for also for other instruments

 Theoretical HONO daytime level by photostationary state (PSS) assumption and know gas phase reactions:

Results

Extra HONO/OH source: d[HONO]/dtextra

- Extra daytime HONO/OH source of up to 80 pptV/h
- Correlates with $J(NO_2)$

Results

• Extra HONO/OH source >> OH source by O_3 -photolysis

• Extra HONO/OH source correlates with J(NO₂)

- NO_2 +HA+hv correlates with J(NO_2)
- nitrate-photolysis not...

Results

But correlates also with J(O¹D)...
nitrate photolysis would correlate with J(O₁D)

- Photochemical HONO formation observed
- But: Mechanism still not clear...
- Can be hopefully further clarified when still missing data ([HA], [nitrate], etc.) is available...

- HONO successfully measured under polar conditions for the first time by the LOPAP technique
- HONO/NO_x and HONO/NO_y in excellent agreement with other remote LOPAP data, but much lower compared to previous data from "wet chemical" instruments
- ➔ HONO] was overestimated in the past, in excellent agreement with recent LIF data from South Pole
- ➔ Interferences are a serious problem for "wet chemical" HONO instruments

Conclusion

- [HONO]_{exp.} >> [HONO]_{theo.}
- Extra HONO source of up to 80 pptV/h quantified
- \bigcirc Much more important compared to the O₃-photolysis
- Extra HONO source correlates with light intensity
- Photochemical source proposed in good agreement to other studies
- Formation mechanism still not clear...

Thank you for your attention

