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�NOx (NO+ NO2) plays an important role in the atmosphere, 
controlling O3 formation and acid deposition.

�NO2 is a harmful trace gas for which new threshold limit values 
were implemented in the EU in 2010. These limits (e.g. annual 
mean: 40 µg/m3) are typically exceeded under urban conditions.

�Photocatalytic degradation of NO2 on environmental surfaces 
(paints, concrete, glass, etc.) may help to reduce [NO2].

�TiO2 (anatase) is a known photocatalyst for NO2, e.g. [1-4].

�However, harmful products were identified on pure TiO2

surfaces:
- Nitrous acid (HONO), [1, 2]

- Nitrous oxide (N2O), [3, 4].

INTRODUCTION

EXPERIMENTAL
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RESULTS

ATMOSPHERIC IMPLICATION

� Commercial photocatalytic dispersion paints (Sto PhotosanNOX)

� Flowtube study under atmospheric (c, r.h., hν) conditions (Fig. 1)

� Actinic flux (<390 nm) similar to the atmosphere (Fig. 2). E.g. 
J(NO2)all lamps/with sample= 0.008 s-1

� NO/NO2 measured by chemiluminescence/"blue light" converter

� HONO measured by the LOPAP technique

� N2O by GC/ECD

� Adsorbed nitrite/nitrate by ion chromatography

RESULTS (cont.) 

3. Proposed Mechanism

�Slow dark reaction of NO2 and heterogeneous formation of HONO 
both, on photocatalytic and non-catalytic reference paints

� Fast photocatalytic degradation of NO and NO2 (γ > 10-5)

�HONO also strongly decompose under irradiation 

⇔In contrast to studies on pure TiO2 surfaces [1, 2]

�Small NO2 formation in the photocatalytic reaction of NO

�No formation of N2O

�Quantitative formation of nitrate (yield ca. 90 %)

�Small yield of H2O2 only in the presence of O2

AIM OF THE STUDY

�Kinetic and mechanistic study on heterogeneous reactions of NOx

on commercial photocatalytic dispersion paints.

� Formation of harmful products?

�Estimation of the NOx reduction under urban conditions.

1. Product study

Fig. 1: Experimental set-up

2. Dependencies

�Rate constants (1. order) were obtained by modelling of the 
experimental data including the know Leighton chemistry

� k(NO+TiO2), k(NO2+TiO2) independent on the concentrations

� k(NO+TiO2), k(NO2+TiO2) correlate linear with light intensity

�Strong humidity dependence:

- k(NO+TiO2) decrease with increasing r.h.   � H2O not necessary 

- k(NO2+TiO2) increase first with increasing r.h.� H2O necessary

- k(HONO+TiO2) increase with increasing r.h. � H2O necessary

Fig. 5: Proposed mechanism
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Fig. 2: Actinic flux in the photoreactor compared to the atmosphere
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Fig. 3: Photocatalytic degradation of NO2, NO2+NO and NO

Fig. 4: Humidity dependence of the rate constants of NO, NO2 and 
HONO on photocatalytic paints

☺All harmful nitrogen species studied (NO, NO2, HONO) 
strongly decomposed on photocatalytic paints (γγγγ>10-5) 

☺No N2O formed

�Application of photocatalytic paints recommended

�Near unity yield of HNO3/nitrate 

�HNO3/nitrate leads to an acidification and eutrophication of 
the environment

�But: application recommended, since:
a) HNO3 is formed almost quantitatively from NOx also in the 

atmosphere (day:NO2+OH, night: NO2+O3→→)
b) Photocatalytic paints will reduce gas phase HNO3 and its 

impact on plants and humans 

�Recent NOx reduction in a pilot street canyon (S/V: 1 m-1) 
measured during the PICADA project: 40-80 %

�But: k(het) ~ S/V, typical street canyon (20 x 20 m) S/V: 0.1 m-1

�Expected NOx reduction in a typical street canyon:

ca. 5-10 %

�Should be verified ���� EU-Project: PhotoPac(LIFE+)

�May help to reach new threshold limit values for NO2

�Almost cost neutral, in contrast to the new "environmental 
protection areas" in Germany

Fig. 5: Humidity dependence of the heterogeneous HONO forma-
tion/decomposition in the dark and under irradiation

�Photoexcitation of TiO2 leads to the formation of e-(cb) and h+(vb)

� e-(cb) � initiate reduction: O2 + e-(cb)→ O2
- → HO2

� h+(vb) � initiate oxidation: H2O + h+(vb) → OH + H+

�After both reactions, TiO2 is in its initial state (� catalyst)

� Formed radicals (HO2/OH) react with adsorbed nitrogen oxides   
� nitrate (NO3

-) as final product

�HONO only reacts as nitrite (NO2-) in a film of adsorbed water

�Fast HONO reaction only under alkaline/humid conditions

⇔Can explain differences to other studies on pure TiO2 
[1, 2]
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