

Heterogeneous Conversion of Nitrogen Oxides on Commercial Photocatalytic Dispersion Paints

Sebastian Laufs, Ralf Kurtenbach, Peter Wiesen and <u>Jörg Kleffmann</u>

Bergische Universität Wuppertal, FB C - Physikalische Chemie, Gaußstraße 20, D - 42097 Wuppertal, Germany

kleffman@uni-wuppertal.de

INTRODUCTION

 $>NO_x$ (NO+ NO₂) plays an important role in the atmosphere, controlling O₃ formation and acid deposition.

▷ NO₂ is a harmful trace gas for which new threshold limit values were implemented in the EU in 2010. These limits (e.g. annual mean: $40 \ \mu g/m^3$) are typically exceeded under urban conditions.

RESULTS

1. Product study

Slow dark reaction of NO₂ and heterogeneous formation of HONO both, on photocatalytic and non-catalytic reference paints

Fast photocatalytic degradation of NO and NO₂ ($\gamma > 10^{-5}$)

RESULTS (cont.)

3. Proposed Mechanism

Photoexcitation of TiO₂ leads to the formation of e⁻(cb) and h⁺(vb)
e⁻(cb)

initiate reduction: O₂ + e⁻(cb) → O₂⁻ → HO₂

h⁺(vb)

initiate oxidation: H₂O + h⁺(vb) → OH + H⁺

- ➢Photocatalytic degradation of NO₂ on environmental surfaces (paints, concrete, glass, etc.) may help to reduce [NO₂].
- >TiO₂ (anatase) is a known photocatalyst for NO₂, e.g. ^[1-4].
- ➢However, harmful products were identified on pure TiO₂ surfaces:
- Nitrous acid (HONO), ^[1, 2]
- Nitrous oxide (N_2O) , ^[3, 4].

AIM OF THE STUDY

- Kinetic and mechanistic study on heterogeneous reactions of NO_x on commercial photocatalytic dispersion paints.
- Formation of harmful products?
- \succ Estimation of the NO_x reduction under urban conditions.

EXPERIMENTAL

- Commercial photocatalytic dispersion paints (Sto PhotosanNOX)
- \succ Flowtube study under atmospheric (c, r.h., hv) conditions (Fig. 1)
- > Actinic flux (<390 nm) similar to the atmosphere (Fig. 2). E.g.

- > HONO also strongly decompose under irradiation \Leftrightarrow In contrast to studies on pure TiO₂ surfaces ^[1, 2]
- > Small NO₂ formation in the photocatalytic reaction of NO
- > No formation of N_2O
- > Quantitative formation of nitrate (yield ca. 90 %)
- > Small yield of H_2O_2 only in the presence of O_2

2. Dependencies

- > After both reactions, TiO_2 is in its initial state (\rightarrow catalyst)
- Formed radicals (HO₂/OH) react with adsorbed nitrogen oxides
 nitrate (NO₃⁻) as final product
- > HONO only reacts as nitrite (NO₂⁻) in a film of adsorbed water
- → Fast HONO reaction only under alkaline/humid conditions

 \Leftrightarrow Can explain differences to other studies on pure TiO₂^[1, 2]

- $J(NO_2)_{all lamps/with sample} = 0.008 \text{ s}^{-1}$
- > NO/NO₂ measured by chemiluminescence/"blue light" converter
- > HONO measured by the LOPAP technique
- > N₂O by GC/ECD
- Adsorbed nitrite/nitrate by ion chromatography

Rate constants (1. order) were obtained by modelling of the experimental data including the know Leighton chemistry

- \geq k(NO+TiO₂), k(NO₂+TiO₂) independent on the concentrations
- \geq k(NO+TiO₂), k(NO₂+TiO₂) correlate linear with light intensity
- Strong humidity dependence:
- $k(NO+TiO_2)$ decrease with increasing r.h. \rightarrow H₂O not necessary
- $k(NO_2+TiO_2)$ increase first with increasing r.h. \rightarrow H₂O necessary
- $k(HONO+TiO_2)$ increase with increasing r.h. $\rightarrow H_2O$ necessary

Fig. 5: Proposed mechanism

ATMOSPHERIC IMPLICATION

- ⓒ All harmful nitrogen species studied (NO, NO₂, HONO) strongly decomposed on photocatalytic paints (γ >10⁻⁵)
- [©] No N₂O formed
- →Application of photocatalytic paints recommended

> Near unity yield of HNO₃/nitrate

- ⊗HNO₃/nitrate leads to an acidification and eutrophication of the environment
- →But: application recommended, since:
- a) HNO₃ is formed almost quantitatively from NO_x also in the atmosphere (*day:* NO₂+OH, *night:* NO₂+O₃ $\rightarrow \rightarrow$)
- b) Photocatalytic paints will reduce gas phase HNO₃ and its impact on plants and humans
- Recent NO_x reduction in a pilot street canyon (S/V: 1 m⁻¹) measured during the PICADA project: 40-80 %
- > But: k(het) ~ S/V, typical street canyon (20 x 20 m) S/V: 0.1 m^{-1}

Fig. 2: Actinic flux in the photoreactor compared to the atmosphere

ACKNOWLEDGEMENT

The financial support by the LUBW (Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg) is gratefully acknowledged **Fig. 4:** Humidity dependence of the rate constants of NO, NO_2 and HONO on photocatalytic paints

Fig. 5: Humidity dependence of the heterogeneous HONO formation/decomposition in the dark and under irradiation

→Expected NO_x reduction in a typical street canyon:
ca. 5-10 %

Should be verified → EU-Project: PhotoPac (LIFE+)

➤ May help to reach new threshold limit values for NO₂

Almost cost neutral, in contrast to the new "environmental protection areas" in Germany

REFERENCES

- [1] Gustafsson et al.: Reduction of NO_2 to Nitrous Acid on Illuminated Titanium Dioxide Aerosol Surfaces: Implications for Photocatalysis and Atmospheric Chemistry, Chem. Comm., 2006, 3936-3938.
- [2] Ndour et al: Photoenhanced Uptake of NO₂ on Mineral Dust: Laboratory Experiments and Model Simulations, Geophys. Res. Lett., 2008, **35**, L05812.
- [3] Zhang et al.: Investigation of TiO₂ Photocatalysts for the Decomposition of NO in the Flow System, J. Catal., 2001, **198**, 1-8.
- [4] Bowering et al.: Silver Modified Degussa P25 for the Photocatalytic Removal of Nitric Oxide, *Int. J. Photoenergy*, 2007, Article ID 90752, doi:10.1155/2007/90752.