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Challenge
Construction of a compact mass-analyzer for
qualitative and quantitative analyses:
• in N2 as process gas matrix but also in

challenging process gas matrices, e.g. H2

• allowing a wide process gas pressure
range between 10-2 to 103 mbar

• usage of several filament-free ionization
methods
o laser multi-photon ionization
o single-photon ionization
o chemical ionization

• quantitative analyses:
o determination of the limit of detection
o high dynamic range over six orders of

magnitude
• qualitative analyses:
o signal distribution depending on

• the process gas
• the chosen ionization method

Distribution of Ion Acceptance (DIA)

DIA measurements allow an optimization of
the ion source performance and represent a
powerful tool for mechanistic examinations
of ion-molecule reactions. [1]

Experimental Setup
Mass Spectrometer: CTOF (TOFWerk Swi)
• Custom transfer stage with an ionization

chamber operating at intermediate pres-
sures up to 1 mbar

• Different filament-free ionization methods,
in either continuous or pulsed mode

• Mass range: 1 – 5000 Da
• Resolution: 1000

Ionization Methods:
• Laser: quadrupled Nd:YAG (266 nm)

for two-photon ionization
• Single-photon ionization: VUV-EBEL-lamp

(128 ± 10 nm)
• Chemical ionization: induced by gas

discharge

Gases:
• Custom gas mixtures [toluene in N2

(500 ppmV; 10 ppmV and 10 ppbV) or
toluene in H2 (10 ppmV and 500 ppbV)]

• Dynamic dilution stage (up-to 1:1000)

For DIA measurements either laser or single-
photon ionization is used (spatially resolved
ionization)

Distribution of Ion Acceptance

Development of a compact multiple-ionization-stage TOF mass 

analyzer system for trace component monitoring within 

chemically challenging process gas matrices

Specifications/Performance of the Setup

Methods

Best performance of the setup was obtained with
gas discharge induced chemical ionization:
 detection limit 25 pptV with S/N 6
 high dynamic range over six orders of magnitude

Laser ionization and single-photon ionization:
 higher detection limits
 smaller dynamic range
 but spatially resolved ionization possible

Toluene – Chemistry: Signal distribution depending on ionization method and process gas

Setup

• A TOFWerk CTOF is successfully equipped
with an ion notch filter and a custom ion
transfer stage.

• The ion notch filter strongly suppresses
selected m/z-ranges to improve the
transmission efficiency of target analyte
ions.

• The ionization chamber allows usage of
several filament-free ionization methods,
such as two-photon laser ionization,
single-photon ionization, and chemical
ionization. The latter is driven by a gas
discharge, which operates at intermediate
pressures of approx. 1 mbar.

• With selected orifice sizes, sample
pressures in the range 10-2 to 103 mbar
are tolerated.

Ion Chemistry

• Depending on the ionization method
employed and the process gas present,
different reactant and/or analyte ions are
generated.

• These ions follow distinct and well
defined reaction path-ways, which are
governed by the chemical nature of the
process gas matrix.

DIA measurements

• Imaging the distribution of ion acceptance
allowed the optimization of source and ion
transfer parameters.

• Depending on the ionization position dif-
ferent analyte ion populations were ob-
served, providing a deep insight into the
ion-molecule chemistry prevailing in the
sampler-skimmer region.
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Further reactions of ionized toluene species with neutral toluene:

C6H5CH2
+ + C6H5CH3  C7H11

+
m/z 95

C6H5CH2
+ + C6H5CH3  C14H15

+
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C6H5CH2
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+
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+
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+
m/z 91

As expected, the chosen ionization method determines the
obtained analyte ion distribution.

Light-induced ionization with either the VUV-EBEL-lamp or the
Nd:YAG UV laser leads to direct ionization of the analyte. In case
of toluene, the primary radical cation is observed, as expected.
 [C6H5CH3].+

Chemical ionization is induced with a point-to-plane gas dis-
charge. The reactant ions are generated depending on the carrier
gas and background species present.
 In N2: N+, N2

+, N4
+; H2O+, [H(H2O)n]+ (background water, n = 1-5)

 In H2: H3
+; [H(H2O)n]+ (background water, n = 1-5)

Subsequent ion-molecule chemistry leads to the formation of
analyte ions as shown on the right.
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Figure 1: 
TOFWerk CTOF with custom ion transfer stage 
and shoe box sized analyzer

Figure 3: 
Ionization chamber
(operating @ approx. 
1 mbar), 
a) equipped with MgF2

windows for laser 
ionization 

b) the VUV-EBEL-lamp is 
attached through a 
mirror system from the 
far side, replacing one 
of the windows 

c) an opening located 
perpendicularly to the 
sampler-skimmer axis 
serves as gas discharge 
source mount

Figure 16: Mass spectrum of toluene in N2, approx. 50 ppmV, 
laser ionization
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Figure 8-10:
Ion guiding voltages 
were optimized for 
maximum signal 
intensities while 
ionizing close to the 
skimmer.
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Figure 2: 
Ionization chamber and transfer stage with ion guiding elements. 
(a) sampler, (b) skimmer, (c) Einzel-lens, 
(d) filter orifice, (e) quadrupole, (f) lens system

Figure 11-13:
Ion guiding voltages 
were optimized for 
maximum signal 
intensities while 
ionizing close to the 
sampler.
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Figure 4: Mass spectrum of 184 pptV Toluene in H2

Average of 60 s integration time leads to S/N 50 @ m/z 91

Figure 5: Peak area
of m/z 91 and 93 
depending on the
toluene mixing ratio, 
dynamic range
between 25 and
450ppbV
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Figure 6: Dynamic range between
0.5 – 100 ppbV

Figure 14: Mass spectrum of toluene in H2, approx. 
1 ppmV, chemical ionization

Figure 15: Mass spectrum of toluene in N2, approx. 
20 ppmV, chemical ionization

Figure 7: Dynamic range between
0.5 – 500 ppmV
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